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Multiverse conceptions in set theory

The broad multiverse
All the possible models of all possible collections of axioms are part
of the multiverse.

The generic multiverses
This multiverse is formed by all the models of ZFC(+LCs)
obtained by set forcing. Then, we differentiate between universes
using a strong logic (an idea owed to Woodin, from now on GMΩ)
or supposing the existence of a core (an idea owed to Steel, that is
the GMH).

The Hyperuniverse
The collection of all countable transitive models of ZFC .
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Naturalism in Philosophy of Mathematics

UNIFY
Our framework should be foundational: we need an arena in which
all mathematical phenomena are represented.

MAXIMIZE
In our framework there should be as many objects as possible.
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The main argument

I The GMH maximizes the number of isomorphisms types
available;

I Moreover, classic set theory ZFC is restrictive over the GMH ;
I Thus, the GMH strongly maximizes over ZFC .
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The Generic Multiverse with a core (GMH)

Definition of the core
The core of the multiverse is the collection of all the statements
that are true in every universe of the multiverse.
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The Multiverse Language MV for GMH

I The usual syntax of the language of set theory, but with two
sorts:
I sets (as usual);
I worlds;

I this language is expressive enough to state versions of the
axioms of ZFC and large cardinals hypotheses;
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The Axioms of the GMH

Axioms

I For each axiom φ of set theory and for every world W of the
multiverse, there exists a translation of φ in W , denoted φW ;

I Every world is a transitive proper class. An object is a set just
in case it belongs to some world;

I If W is a world and P ∈W is a poset, then there is a world of
the form W [G ] where G is P-generic over W ;

I If U is a world, and U = W [G ], where G is P-generic over W ,
then W is a world.
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The Axioms of the GMH (cont.)

Amalgamation
If U and W are worlds, then there are G and H set generic over
them such that W [G ] = U[H].

Axiom H
For any sentence φ in LST : if φ is true, then for some
M = AD+ + V = L(P(R)) such that R ∪ OR ⊆ M,
(HOD ∩ VΘ)M |= φ. Consequences:
I It implies that the multiverse has a core;
I can be used to study the definability of hierarchies;
I it is consistent with large cardinals hypotheses.
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Restrictiveness

Definitions

Let S and T be set theories.
I T� - recaptures S if and only if there is a consistent

extension T ∗ of T such that S � T ∗;
I S weakly � - maximizes over T if and only if T � S and T

doesn’t � - recaptures S, and we write T <�
weak S;

I S strongly � - maximizes over T if and only if it weakly � -
maximizes over T and S ∪ T is inconsistent, and we write
T <�

strong S;
I T is weakly/strongly � - restrictive if and only if there is a set

theory T ∗ that is consistent that weakly/strongly � -
maximizes over T .
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Restrictiveness of ZFC

Proposition
ZFC is strongly restrictive over GMH .

I GMH strongly maximizes over ZFC iff
1 GMH weakly maximizes over ZFC iff

ZFC � GMH ;
there is no set theory T that extends ZFC such that GMH �T

2 GMH ∪ ZFC is inconsistent;
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Refining of the definitions

Translations

A translation τ = 〈δ, ε〉 consists of a L∈-formula with one variable
δ and of a L∈-formula with two variable:
I (x ∈ y)τ := δ(x) ∧ δ(y) ∧ ε(x , y);
I (φ ∧ ψ)τ := φτ ∧ ψτ ;
I (¬φ)τ := ¬φτ ;
I (∃xφ)τ := ∃x [δ(x) ∧ φτ ].

Proposition [Tarski]

A translation τ〈δ, ε〉 is an interpretation of T in S if and only if for
every axiom φ of T , S ` φτ .

M. de Ceglie PLUS
In favour of the GMH
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Refining of the definitions

Interpretations

Let S and T be set theories and let τ = 〈δ, ε〉 be a translation of
T in S.
I τ is a ∈ - interpretation of T in S if and only

S ` ∀x∀x [(x ∈ y)τ → x ∈ y ];
I τ is a transitive interpretation of T in S if and only if τ is a ∈

- interpretation and S ` ∀x∀y [(x ∈ y ∧ δ(y))→ δ(x)];
I τ is an inner model interpretation of T in S if and only if τ is

a transitive interpretation of T in S and S ` ∀α[δ(α)].
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A second argument for the GMH

Sketch of the proof (1)

1 ZFC �Maddy∗ GMH ⇐⇒ ZFC �ptim GMH
I τ is a possibly truncated transitive interpretation of ZFC in

GMH iff;
τ is a possible truncated ∈ - interpretation of ZFC in GMH iff
GMH ` ∀x∀y [(x ∈ y)τ → x ∈ y ];
GMH ` ∀x∀y [(x ∈ y ∧ δ(y)) → δ(x)].

I GMH ` ∀α[δ(α)].
2 ZFC �Maddy∗ GMH ⇐⇒ ∃τ such that

I GMH ` φτ for every axiom φ of ZFC ;
I GMH ` (Aτ∧NewIso(τ)∨(∃κ[Inacc(κ)τ∧(Aτκ∧NewIso(τκ))])).
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